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1. Introduction

Bose-Einstein condensation (BEC) in an ultra-cold gas of atoms has become a well known phenomenon  
since its first experimental demonstration in 1995 [1].  

What is the scheme of Einstein’s original prediction of BEC in 1924 [2]? 

He refers to a monoatomic ideal quantum gas. There he identifies a fundamental quantum phase transition. 
Structurally, he compares the phase transition with the condensation of vapor. He fixes the temperature  
in the gas, and increases the number density of the atoms beyond the saturation value. 

That means: He uses a grand-canonical ensemble, defined by two independent variables.

[1] M. H. Anderson et al., Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995). 
[2] A. Einstein, Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung, Sitzungsber. Preuss. Akad. Wiss. I, 3 (1925). 
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Albert Einstein, 1879-1955 
Satyendra Nath Bose, 1894-1974
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Einstein’s approach to BEC in an ideal quantum gas presumed particles with non-zero rest mass.  
He extended Bose’s new statistics for Planck’s ideal photon gas to an ideal quantum gas of massive  
“bosons“. In this case, it is possible to control the particle density experimentally. Einstein’s hypothesis of   
a condensation in an ideal boson gas did not include an ideal photon gas. 

The zero rest mass of the free photons presents a severe conceptual problem for a photon condensation.  
Condensation means that, beyond the saturation value, an excess of bosons in the gas transit to a  
“state without kinetic energy“ [2]. A photonic occupation of the state without kinetic energy seems  
to have no substance at all. 

A close inspection of the thermodynamic framework gives a solution for the conceptual problem of a BEC 
of photons. The clue is an appropriate thermodynamic limit which proves the correct selection of the  
thermodynamic variables which are involved. 
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This talk refers to my paper [3], a comprehensive and mathematically self-contained derivation of photon  
condensation. The mathematical technique is inspired by [4] where the focus aimed at non-relativistic  
BEC-systems.  

The approach to a photon condensation presented here, is applied to the experimental setting for a Bose- 
Einstein condensation of photons in an optical microcavity realized by the group of Martin Weitz,  
University Bonn [5]. The theoretical predictions match the experimental results. 

[3] E. E. Müller, General theory of Bose-Einstein condensation applied to an ideal quantum gas of photons in an optical microcavity. 
      Phys. Rev. A 100, 053837 (2019). 
[4] M. Van den Berg, J. Lewis, and J. Pulè, A general theory of Bose-Einstein condensation. Helv. Phys. Acta 59, 1271 (1986). 
[5] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Bose-Einstein condensation of photons in an optical microcavity,  
      Nature 468, 545 (2010).
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2. Thermalization in an ideal photon gas

We look for a thermalization mechanism in 
an ideal photon gas. Already, at the end  
of the 19th century, this question had been a 
challenge for Max Planck’s reasoning on  
heat radiation. For an evacuated cavity with  
perfectly reflecting walls filled with some  
arbitrary composition of light rays, he  
symbolically postulated the presence of  
a minute black dust, a coal dust,  
to transform any radiation into  
black body radiation [6].

[6] M. Planck, Vorlesungen über die Theorie der Wärmestrahlung, J. A. Barth, Leipzig, 1921; see paragraph 52.

Max Planck, 1858-1947
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A coal dust absorbs and re-emits radiation. It is a means to achieve thermal equilibrium.  
The photon gas assumes the temperature of the black dust. 

In a real cavity, the walls are not perfectly reflecting. They take over the role of a coal dust.  
Eventually, the photon gas in the cavity will reach thermal equilibrium with the walls. 

A thermalization mechanism in an ideal quantum gas of photons is essential  
- not only to establish thermal equilibrium, but, in addition,  
- to realize a possible phase transition.  
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A quantum view to thermalization 

We use the very quantum nature of an ideal photon gas to get around Planck’s knack of a coal dust. 
Given a finite size cavity, with perfectly reflecting walls. Let R be a typical length of the cavity.  
The localization within the cavity implies a spatial uncertainty for the photons of 

          ∆x  <  R 

The Heisenberg uncertainty relation implies an uncertainty ∆p for the photon momentum p = h /c. 

          ∆p  ≥  (h/4π) / ∆x  >  (h/4π) / R 

          ∆   ≥  (c/4π) / ∆x  >  (c/4π) / R 

The uncertainty of the frequency , ∆ , induces a smearing out of the resonances. They overlap. Thus,  
we get nonzero transition probabilities between the resonances, implying a thermalization mechanism. 

v

v

v v
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So far, the use of the uncertainty relation depends on the finiteness of the cavity.  
Since we shall use a thermodynamic limit, we need a procedure for infinite quantum systems  
to establish a thermal equilibrium.  

We know, that the uncertainty relation results from the non-commutativity of the observable algebra. 
In the Tomita-Takesaki theory there is an operator on a von Neumann algebra, the so-called  
“modular operator“ ∆, which measures the non-commutativity in the observable algebra.  
In the ideal quantum gas, ∆ induces a time evolution:  

          x    ∆it x ∆-it,   x  von Neumann algebra of observables.  

This holds for infinite large systems, too. 

→ ∈
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In the thermal equilibrium, the time evolution with Hamiltonian H is given by the above modular  
time evolution, up to a scaling factor [7, 8]. This scaling factor is the inverse temperature. 

          H   =   –  –1  log   
  
The modular operator is intimately related to quantum correlations. So, the thermal fluctuations  
can be reduced to quantum fluctuations. 

Thus, we have a thermalization mechanism for an ideal quantum gas of photons that does not rely on a 
black dust of coal. The system may be finite, or infinite. 

Loosely spoken: We decarbonize thermalization.

β Δ

[7] M. Takesaki, Theory of Operator Algebras II, Encyclopaedia of Mathematical Sciences, Vol 125, Springer, N. Y., 2003, p. 92. 
[8] R. Haag, Local Quantum Physics, 2nd ed., Springer, N. Y., 1996, p. 216 ff.
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3. Particles of zero rest mass present a problem for Bose-Einstein condensation

We consider a photon gas in a finite cavity of volume VR and surface area AR with reflecting walls.  
The photon Hamiltonian for the cavity with Dirichlet boundary conditions is 

(1) 

with strictly positive eigenvalues 

(2) 

Chemical potential µR* of the photon gas: 

(3)           0  <  µR*  ≤ 

The eigenvalues depend on the inverse of R: 

(4)                ~ R–1, …

—c -DR  

 0  <  e1
R  £ e2

R  £ e3
R £ ...

e1
R

e1
R

Bose-Einstein condensation in an ideal photon gas, E. E. Müller    12   



The chemical potential of a photon gas in a resonator of finite size is non-zero. The photons within the  
resonator propagate with the speed of light, and their mass is given by the fundamental relation 

(5)          mc2  =  h . 

The eigenfrequencies in the cavity are reciprocal proportional to R (3). In particular, 

(6)             1  ~  R–1    

For the sake of conceptual clarity on Bose-Einstein condensation of photons, we employ the infinite  
volume limit of an ideal photon gas in the cavity. It is well known that a thermodynamic limit presents  
a sharp manifestation of a phase transition. In the case of BEC, we have to look at the occupation of the  
ground state. Relation (6) shows that the energy of the photons in the ground state tend to zero. So, in the  
thermodynamic limit, the ground state energy seems to be zero.  

Except in the case of an infinite number of photons with infinitesimally small energy! 

ν

ν
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4. Choosing the independent variables

The “canonical ensemble“ maximizes the entropy subject to the mean energy density being fixed. 
The respective Lagrange parameter  stands for the inverse temperature. A canonical ideal quantum gas  
excludes a phase transition. 

The “grand-canonical ensemble“ maximizes the entropy subject to the mean energy density and the  
mean particle density being fixed. The additional constraint is dealt with a second Lagrange parameter µ,  
associated with the chemical potential. A grand-canonical ideal quantum gas admits a phase transition. 

We use a grand-canonical ensemble to describe the ideal quantum photon gas under consideration, with the  
following thermodynamic variables: 
- mean energy density u 
- mean photon number density    
- inverse temperature   
- chemical potential µ of a photon in the photon gas 

β

ρ
β
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We allow a possibly infinite number of infrared photons with infinitesimally small energy. In this case,  
it is impossible to control experimentally the number density as a thermodynamic variable. This problem  
translates to the chemical potential. Therefore, we choose the mean energy density and the temperature as  
independent variables of the photon gas. They are experimentally accessible and controllable.  

This decision has a consequence for the thermodynamic limit. It is very common to fix the particle number  
density in the infinite volume limit. Not so in this approach. Here, we shall fix the mean energy density  
when performing the limit.
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5. Photon condensation in three and two dimensions

The lower bound of the spectrum of the photon Hamiltonian is not invariant under the procedure of the  
infinite volume limit. This is mathematically unsatisfactory. Therefore we rewrite the energy spectrum to  
get its lower bound fixed at zero. Accordingly, we introduce a normalized chemical potential µ. 

(7)              

  
(8)             µR  ≤  0,     µR  =   µR* –   

We observe 

(9)                 – µR*  =      – µR  

lk
R :=  ek

R-e1
R

e1
R

lk
Rek

R
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Our task is to find the function of the mean energy density of the grand-canonical photon gas in the  
finite size resonator. With an asymptotic expansion for R  , we get the bulk term and the surface term. 

Integrated spectral density of the photon Hamiltonian that counts the eigenvalues          :=        up to the  
variable  [9]; k denotes the mode number,  the helicity: 

(10)                  

  

Spectral density: 

(11)                             

→ ∞

λ α
lk , a
R

 =  1
3 p2
J l
—c
N3- AR

8 pVR
J l
—c
N2+ OJ l

R2 N

1

p2
H—cL-3 l2 dl - AR

4 pVR
H—cL-2 l dl +OIR-2 M dl

FR HlL :=
1
VR
# 9Hk , aL Œ N¥ 8+1, -1 < : lk , aR b l=

=dFR HlL

[9] M. Van den Berg, On the asymptotics of the heat equation and bounds on traces associated with the Dirichlet Laplacian, 
      J. Funct. Anal. 71, 279 (1987)

lk
R
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The Hamiltonian HR  of the photon gas is the well known second quantization of the single photon  
Hamiltonian (1). The helicity contributes a factor 2. The zero point energy in HR will vanish in the  
thermodynamic limit of the mean energy density, so we omit it. 

The mean energy density of the photon gas is the grand-canonical expectation value of  HR / V. 

(12)                                     =u RHb, mR) 2
VR
‚
k=1

•

IlkR + e1RM „bJlk
R-mRN - 1

-1
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(13)
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                               =   
2 e1

R

VR
I„-bmR - 1 M-1 +  2

VR
⁄k=2
• Ilk

R + e1
R M ⁄n=1

• „-nbJlkR-mR N                        

                               =   
2 e1

R

VR
I„-bmR - 1 M-1 +  ⁄n=1

• „nbmR  2
VR
⁄k=2
• Ilk

R + e1
R M „-nblk

R
                           

                               =   
2 e1

R

VR
I„-bmR - 1 M-1 + ⁄n=1

• „nbmR  Ÿ e2R
• Il + e1R M „-nbl ‚FRHlL

=   
2 e1

R

VR
I„-bmR - 1 M-1 +  2

VR
⁄k=2
• Ilk

R + e1
R M „bJlkR-mR N - 1

-1
u RHb, mR)



Asymptotic expansion of the sum of the excited states, up to second order:  

  

(14)                                                       =  

Critical energy density in 3 dimensions, with µ = 0 (black body radiation in 3 dimensions): 

  

(15)                                 =                     g4 (1) ;         g4 (1)  =  π4 / 90 

  

Critical energy density in 2 dimensions, with µ = 0 (black body radiation in 2 dimensions): 

  

(16)                                      =                     g3 (1) ;         g3 (1) = 1.20206 …

‚
n=1

•

„nbm
1

n 4
6

p2 —3 c 3 b4
-

1

n 3
AR

VR

2

4 ˛—2 c 2 b3
u e

RHb,mRL  ~  u e Hb,mL

u crit
bu lk HbL 6

p2 —3 c 3 b4

u crit
surface HbL 2

4 ˛—2 c 2 b3
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Photon condensation in 3 dimensions 

Given a temperature , and a value u of the mean energy density. Then the chemical potential µR is a  
dependent variable determined by the equation 

(17)                                   =  u 
   
                       If   u  ≤               ,      µR       µ  for  R      where  µ  is the unique solution of 

(18)                                             =  u. 

                       If   u  >                ,    µ = 0. 

                       The excess energy  u1 :=  u –                 occupies the ground state.  
                       This is the photon condensate. 

β

→ ∞

uR Hb, mR L
u crit
bu lk HbL →

6
p2 —3 c3 b4

 g4I„bmM

u crit
bu lk HbL

u crit
bu lk HbL
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Photon condensation in 2 dimensions 

Given a temperature , and a value us  of the mean energy surface density. 

(19)                If   us  ≤                    ,   µ  is the unique solution of 

(20)                                           =  us. 

                       If   us  >                    ,    µ = 0. 

                       The excess energy       :=  us –                      is the photon condensate on the surface. 

β

u crit
surface HbL

2
4˛—2 c2 b3

g3(„bmM

u crit
surface HbL

u1
s u crit

surface HbL
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6. Application to a two-dimensional optical microcavity

Experimental setting in [5]:  Two curved mirrors form the optical cavity. The cavity is filled with a  
dye solution. The dye is pumped with a laser beam.  

Radius of curvature  Rcurve = 1 m, central distance  D0 = 1.46 µm   
Reflectivity of the dielectric mirrors:  > 99.997 %.  

Critical surface energy [3]: 

(21)                                ( )   =                               

                               (300 K)   =   9.17 x 10–6 m2  x 1.3601 x 10–11 J/m2   =   12.47 x 10–17 J  

(22)                         (300 K)  =   1.31 W;                       =   (1.55 ± 0.60) W   [5]. 

βUcrit surf AR u crit
surface HbL

Ucrit surf

Pcrit Pc , ex p
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Martin Weitz, University of Bonn. 

BEC of photons in an optical microcavity.
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7. Spatial localization of the photon condensate 

We shall determine the explicit form of the condensate [3]. We demonstrate it for the case of a  
three-dimensional parallelepiped with edges  L1, L2, L3:  

(23)                        ≤  xi  ≤      ,    i = 1, 2, 3 

Ground state of the photon gas occupied by N1 photons with energy     :  
  
(24) 

The condensate does not contribute to the grand-canonical entropy density. The entropy of the condensate  
is zero [3]. This means that, in the condensation regime, the ground state is not a mixture of random  
phases (24) but a pure state, with identical phases for the cosine functions. This implies the following 

—
2
-Li —

2
Li

e1
R

‰
i=1

3

cosK—
Li

p x 1,i O ... cosK—Li
p x N1 ,i O
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evaluation of (24): 

(25)                                               =:           (x1, x2, x3)  

  
In the idealization  N1    ∞  the spatial distribution f1 of the condensate is 

(26)                 f1 (x1, x2, x3)   = 

→

‰
i=1

3

KcosK—
Li

p x i OO
N1 f 1

N1

1 for xi = 0, i = 1, 2 , 3

0 for 0 < †xi § £ —
2

Li , i = 1, 2 , 3
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The figure shows the convergence rate of (25) for the x1 component for N1 = 5, 100, 5000. 
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8. Visions for technical applications of photon condensation

1. Photon condensation transforms photons from higher frequencies to lower frequencies. 

2. At the same time the condensate builds up a state of high order, of strong coherence. 

3. The radiation pressure of the condensate is zero, in the thermodynamic limit. 

4. Photon condensation in resonators with fractal dimension larger than 1 might be an intriguing option. 

Ad 1     Photovoltaic energy conversion 
             New electromagnetic radiation sources 

Ad 2     Coherence in biological systems: Microtubuli as resonators, photosynthesis 
             Photonic BEC chips for quantum computing and all optical networks, at room temperature 
             BEC with a low number of photons  

Ad 3     Energy storage  
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9. Photon condensation makes non-zero rest mass emerge

The photon condensate represents stationary energy. 
The Einstein equivalence of energy and mass implies, in this case, a non-zero rest mass. 
Non-zero rest mass is the fundamental criterion for matter. 

Hence we have a phase transition from light to mass.  
This is relevant for the understanding of cosmological evolution. 
And possibly for elementary particle physics. 

Photon condensation matters. 
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Convergence rate of the chemical potential in the critical regime  

µR  is determined by (17). In the critcal regime, the excess energy u1 is absorbed by the ground state.  

                                                     ~                                              =    u1    
  

(i)                              µR     ~                ~  

  

This displays the following inequality which is essential of our approach:   

(ii)

2 e1
R

VR
I„-bmR - 1 M-1 2 e1

R

R3
H1 - bmR + ... - 1 L-1

2 b e1
R

R3
fi 1

R4

lim
RÆ•

 u R Hb, mR Hb, u L L   π   lim
RÆ•

u R Hb, 0 L  =   u Hb L,   fo r  u > u Hb L


